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Abstract

This paper shows that the eigenfrequencies of a deformed tyre exhibit a mutual repulsion behaviour if the rotation

velocity is increased. This phenomenon is known as frequency loci veering and is induced by the a-periodicity resulting

from the tyre deformation due to the weight of the car. The corresponding eigenmodes interact in the transition zones and

finally interchange. This is not the case for the undeformed tyre, where it is well known that rotation splits the

eigenfrequencies around the eigenfrequencies of the non-rotating tyre. The change in eigenfrequencies is linearly related to

the rotation velocity and is determined by the circumferential wavenumber and tyre radius only. For the undeformed tyre

no modal interaction occurs as a consequence of rotation. Furthermore, modal interaction increases as tyre load increases

and decreases as material damping increases. In previous work a methodology to model tyre vibrations has been

developed, exploiting a modal base determined in a standard FE package and including rotational effects by a coordinate

transformation. Major advantages of this approach are that the complex build-up of a tyre is retained and that the large

(nonlinear) deformations and small (linear) vibrations are treated separately. In the present paper, the effects of

deformation on the eigenfrequencies of a rotation tyre are examined using this methodology.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The effects of rotation on the dynamic behaviour of a tyre are important in modelling the tyre/road noise
caused by vibrational mechanisms. It is generally acknowledged that the main effect of rotation for the usual
velocity range in tyres is a change of the wave velocities observed by an external observer (Eulerian reference
frame) depending on the travelling direction [1–4]. In the Eulerian reference frame the speed of waves
travelling in the direction of rotation increases while for waves propagating in the opposite direction the wave
speed decreases by the same amount, which depends on the rotational velocity, wavenumber and tyre radius.
This phenomenon is often referred to as Doppler effect.

Most of the published work on rotating tyres is based on the analysis of undeformed (unloaded) tyres. In
Ref. [1] an equation is found which describes the symmetric split of the eigenfrequencies of an undeformed tyre
when the rotational velocity increases. This equation can be used to map the non-rotating natural frequencies
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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on the natural frequencies of the rotating tyre in the wavenumber-frequency domain. Similarly, in Ref. [2] the
vibration field of a rotating tyre is determined in a Lagrangian reference frame and the vibration field in the
Eulerian reference frame is found by applying a Doppler shift in the wavenumber domain. Another possibility
is to directly modify the speed of travelling waves according to the Doppler shift like in Ref. [3]. An
alternative, FE-based, approach is presented in Ref. [4], where the motion of a rolling tyre is directly described
in a Eulerian reference frame. Here the Doppler shift is also reported for the undeformed tyre. For the case of
a loaded tyre, it is found that the eigenfrequency distribution decreases (modal density increases) as the
rotational velocity increases.

From the above it can be concluded that the effect of rotation on the dynamic behaviour of unloaded tyres
is known. It is unclear, however, what the effects of rotation on the dynamic response of a tyre are if the initial
deformation of the tyre structure is included in the analysis. The purpose of this paper is to study the effects of
rotation on the eigenfrequencies of a deformed (loaded) tyre. This is investigated by applying the approach
presented in Ref. [5] to a realistic tyre model. It is shown that for a deformed tyre the eigenfrequencies do not
cross when the rotational velocity increases, but show a mutual repulsion behaviour known as frequency loci
veering. In addition, the real parts of the eigenvalues cross at the rotational velocity where the corresponding
imaginary parts veer. Furthermore it is found that modal interaction increases as tyre load increases and
decreases as material damping increases.

This paper is organised as follows. In Section 2 the approach to model vibrations on deformed rotating tyres
from Ref. [5] is briefly reviewed and in Section 3.1 the used FE tyre model is described. Hereafter, Section 4
discusses the effects of rotation on the eigenfrequencies of a tyre, using the methodology described in
Section 2, both for the unloaded and for the loaded situation. After that, the influence of the amount of
loading and the presence and amount of damping is discussed in Section 5. Finally, the conclusions are
summarised in Section 6.

2. Modelling approach

A methodology to model tyre vibrations up to 500Hz on deformed rotating tyres is developed in Ref. [5].
Initially, the tyre is inflated and the initial tyre deformation is calculated using the full nonlinear system of
equations. Subsequently, the modal base is constructed around the deformed state to include the effect of
deformation on the eigenmodes of the tyre. After that, the mass matrix, eigenvalues and eigenvectors are
extracted from the FE code and a coordinate transformation is applied to model rotation. As a consequence
the stiffening of the tyre due to the centrifugal forces and the Coriolis effect are included in the model. A short
review of the methodology to model rotation is given here.

In Ref. [5], the dynamic equations of a tyre in a Eulerian reference frame are obtained:

€gðtÞ þ ~DðOÞ_gðtÞ þ ~KðOÞgðtÞ ¼ UT fðtÞ (1)

where gðtÞ are the modal coordinates of the tyre in the tyre reference frame, U is the matrix of eigenvectors, fðtÞ
is a column with forces acting on the tyre and

~D ¼ 2PðO;M;UÞ þDmod (2)

~K ¼ SðO;M;UÞ þDmodPðO;M;UÞ þ Kmod (3)

The matrices P and S are added stiffness and damping terms due to the rotation

PðO;M;UÞ ¼ UTM X̂Uþ O
DU
Db

� �
(4)

SðO;M;UÞ ¼ UTM X̂
2
Uþ 2OX̂

DU
Db
þ O2 D

2U

Db2

� �
(5)

where X̂ is a matrix relating the time derivative of the rotation matrix to the rotation matrix [5]. Kmod is a
diagonal matrix with elements kii ¼ o2

i , where oi are the natural frequencies of the system, and if Rayleigh
damping is considered, Dmod is a diagonal matrix with elements dii ¼ 2xioi, where xi are the modal damping
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Fig. 1. Illustration of the approach to model vibrations on deformed rotating tyres.
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ratios. The data needed to build the matrices ~D and ~K are the eigenvalues and eigenvectors of the tyre in the
tyre reference system obtained from a FE model and M the mass matrix of the FE model. In addition,
O stands for the rotational velocity of the tyre and b represents the spatial angle in the fixed reference frame. It
should be noted that ~D and ~K are non-diagonal and non-symmetric matrices, which means that Eq. (1) is a
coupled system of equations. Therefore the set of coordinates gðtÞ is not a set of modal coordinates of the tyre
in the fixed reference frame. A new eigenvalue problem can be formulated for Eq. (1) in order to determine the
eigenfrequencies and eigenvectors of the tyre in the fixed reference frame.

The system defined by Eq. (1) is transformed from a second-order to a first-order system and therefore a
new vector y is defined as

yðtÞ ¼
gðtÞ

_gðtÞ

" #
(6)

The first-order system becomes

A_yðtÞ þ ByðtÞ ¼ rðtÞ (7)

with for A, B and r(t)

A ¼
~D I

I 0

" #
; B ¼

~K 0

0 �I

" #
and rðtÞ ¼

UT fðtÞ

0

" #
(8)

Because A and B are non-symmetric matrices, a left and right eigenvalue problem exist resulting in different
eigenvectors. However, the left and right eigenvalues are equal and solving the right eigenvalue problem gives
the eigenfrequencies of the rotating tyre in the fixed reference frame

½lAþ B�C ¼ 0 (9)

This leads to 2n eigenvalues lp and corresponding eigenvectors Cp with p ¼ 1; 2; . . . ; 2n. Again, it is
important to note the rotational velocity dependency of A and B in Eq. (9) via ~D and ~K. The approach from
Ref. [5] summarised above is illustrated in Fig. 1.

3. FE tyre model

3.1. Model description

A FE model of a 185=70 SR14 tyre without tread pattern is used in this research [6]. The tread and sidewall
consist of rubber, while the belts and carcass consist of fibre-reinforced rubber composites. The rubber is
modelled as incompressible and hyperelastic. The hyperelastic behaviour of the rubber is described by a strain
energy potential of the Neo-Hookean form. In addition, the fibre-reinforcements are modelled as a linear
elastic material. In circumferential direction, 72 general three-dimensional 6- and 8-node linear hybrid brick
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elements are used to discretise the model, each node having three active translational degrees of freedom
(DOF). In total, this leads to a tyre model consisting of 6048 elements and to approximately 25; 000 DOF. The
tyre model is inflated to a uniform inflation pressure of 200 kPa. More detailed information about the build-up
and materials of the FE model can be found in Ref. [6].

This FE tyre model has been qualitatively validated for the frequency range 0–250Hz by comparing
eigenfrequencies to experimental data of tyres of similar size, as shown in Fig. 2. Here the calculated
eigenfrequencies of the first symmetric mode family ðn; 0Þ (with n the number of wavelengths in the
circumference) are compared to experimental data. However, the inner structure of the measured tyres is
unknown, which prevents a direct comparison of the calculated eigenfrequencies with the measured results.
Modal damping is assumed here with a fixed damping ratio xi ¼ 0:04 for all modes. This value has been
estimated from the experimental modal analysis performed in Ref. [7] for frequencies up to 250Hz and is in
good agreement with damping values found in the literature (see e.g. Ref. [8]). The assumption of modal
damping with a constant damping ratio for all modes is too simplistic for a tyre. However, this model allows
for a qualitative analysis of the effect of rotation on the eigenfrequencies of a loaded tyre with the unloaded
rotating tyre as reference, which is the goal of this paper.

3.2. Modelling tyre loading

The tyre is statically loaded onto an idealised rigid, flat and smooth surface. The normal to the surface is
aligned with a radial direction in the tyre. The contact between the tyre and the smooth surface is modelled as
a frictionless rigid contact. In order to simulate the static loading, the tyre rim is fixed and the surface is given a
displacement in the normal direction (radial direction of the tyre). The magnitude of the displacement required
to produce the desired reaction force at the tyre rim is obtained from the compression curve shown in Fig. 3.
The displacements applied to obtain the results presented in this paper are summarised in Table 1.

The determination of the eigenmodes is a crucial step in a modal approach, since the tyre response is
described via a superposition of the modeshapes. In the approach described in Section 2 the eigenvectors of a
deformed (loaded) tyre are used to build the modal base. This allows to include the nonlinear effects due to the
large deformations caused by the load. It is a well-known fact that an underformed tyre has multiple
eigenvalues with multiplicity two and the corresponding modeshapes have equal forms but rotated by an
amount p=2n. The absolute orientation of these two modeshapes is arbitrary. Deformation distorts the
symmetry and for every multiple eigenvalue of the undeformed case there are two slightly different eigenvalues
with corresponding modeshapes which have different forms [9]. Moreover, the orientation of the modes is no
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Fig. 3. Compression curve of the FE tyre model: vertical force versus vertical displacement.

Table 1

Tyre load and corresponding vertical displacement.

Tyre load (N) Vertical displacement (mm)

1000 7.3

2750 17.8

4500 26.9

I. Lopez et al. / Journal of Sound and Vibration 324 (2009) 622–639626
longer arbitrary due to the ground contact [9,10]. The naming convention introduced in Ref. [11] to
distinguish between the two sets of eigenmodes of a deformed tyre is adopted here. The eigenmodes are
classified in ‘0’ and ‘extremum’ eigenmodes. The modeshapes corresponding to the ‘0’ eigenmodes have zero
radial displacement at the cross-section in the middle of the tyre–road contact area, while the modeshapes
corresponding to the ‘extremum’ eigenmodes have a maximum radial displacement at that cross-section.
Furthermore, eigenmodes will be named as ðn;mÞ ‘0’ or ‘extr.’ with m ¼ 0; 2; . . . for the symmetric modes and
m ¼ 1; 3; . . . for the anti-symmetric modes.

Experiments show that applying a static load increases the eigenfrequencies compared to the
eigenfrequencies of the undeformed tyre [10,11]. In Ref. [10], this frequency shift upwards is approximately
4% and 10% for the ‘0’ and ‘extremum’ eigenmodes, respectively. In Fig. 4 the lowest 20 calculated
eigenfrequencies for the unloaded and loaded tyre (load 2750N) are shown. Generally, the eigenfrequencies of
a tyre loaded by a force of 2750N are approximately 2:5% (‘0’ modes) and 8:5% (‘extremum’ modes) higher
compared with the undeformed situation. These percentages are in good agreement with the effect of tyre
loading measured in Ref. [10].

3.3. Model reduction

The mass matrix of the FE tyre model is required to take rotational effects into account. However,
exporting the mass matrix is not straightforward due to the dimensions of the mass matrix of a realistic tyre
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Fig. 4. Comparison of the eigenfrequencies of the unloaded (�) and loaded (�) tyre for F ¼ 2750N.
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model. Substructuring allows to reduce the number of DOF and computational costs. Reduction techniques
split the DOFs into subsets (master and slave DOFs) and a transformation is applied to reduce the size of the
system matrices, such that the response of the system is described in terms of the retained master DOFs only.
Guyan reduction is adopted here, which neglects inertia effects and is exact at zero frequency only [12].
However, if the retained DOFs are selected following the guidelines reported in Ref. [13], a reduced eigenvalue
problem can be obtained which gives a maximum error o7% between the full and the reduced models in the
frequency range 0–500Hz.
4. Effects of rotational velocity on the eigenfrequencies of a tyre

In this section, the methodology discussed in Section 2 is applied to the tyre model described in Section 3.1.
The first 400 eigenmodes have been included in the calculations (frequency of the highest included eigenmode
� 600Hz). For the results in this section no damping has been included in the calculation (xi ¼ 0). The
dynamic behaviour of an unloaded tyre is discussed first and these results are validated with the Doppler shift
described in Ref. [1]. Hereafter, the effects of rotation on the eigenvalues of a loaded tyre are examined.
4.1. Rotating undeformed tyre

Fig. 5 shows the development of the eigenfrequencies of the undeformed non-rotating tyre up to 300Hz
versus rotational velocity. The solid lines are the eigenfrequencies obtained solving the eigenvalue problem (9).
The crosses, which are plotted for increasing natural frequencies only, indicate the eigenfrequencies of the
rotating tyre calculated by taking the Doppler shift at the eigenfrequencies of the non-rotating tyre into
account. It can be seen that an excellent agreement exists between the eigenfrequencies found by solving the
eigenvalue problem of a rotating tyre on one hand and the eigenfrequencies predicted by the Doppler shift on
the other hand. The slight underestimation at the higher frequencies and higher rotational velocities is due to
an error in the estimation of the spatial derivatives in Eqs. (4) and (5). These results have been calculated with
a FE model with 72 elements in the circumference and a 7-point finite difference approximation of the
derivatives. The discrepancy disappears if the number of elements and/or the order of the approximation are
increased.
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4.2. Rotating deformed tyre

A flat smooth surface is pressed against the tyre with a force of 2750N, which is derived assuming a total
vehicle weight of approximately 1100 kg for a typical compact class car. Fig. 6 compares the eigenfrequencies
of a deformed tyre (solid line) with the eigenfrequencies of an undeformed tyre (dashed line) in the frequency
range 20–120Hz.

An interesting phenomenon is visible here: eigenfrequency-lines approach each other and suddenly veer
away instead of crossing. This results in high local curvature and the eigenfrequency-lines continue along the
path that the other eigenfrequency-line would have taken if a crossing of the lines would have taken place.
This phenomenon, referred to as ‘frequency loci veering’, ‘avoided crossings’, ‘quasi-degeneracies’ or ‘mode
crossovers’ in the literature [14], has been noted in various structural systems (e.g. a curved beam, cables and
chains, rotating circular string, coupled oscillators, multispan beams, coupled pendulums, blade assemblies
and space structures) [15]. However, to the authors’ knowledge, frequency loci veering has not been related to
tyre dynamics so far.

Apparently some of the lines shown in Fig. 6 cross but if one looks more closely it becomes clear that, in the
absence of damping, there are no line crossings at all (see Fig. 6(a)–(d)). This situation changes when damping
is included, which will be discussed in detail in the next section.

The results shown in Fig. 6 also reveal that interaction occurs between eigenmodes of different families. So
mode (2,1)‘0’ interacts with modes (1,0)‘extr.’ and (1,0)‘0’ (Fig. 6(a) and (b), respectively). To help the reader
interpret Fig. 6 the eigenmodes corresponding to the first 14 eigenfrequencies are summarised in Table 2.

A close examination of Table 2 and Fig. 6 reveals that for the lower eigenmodes strong interaction (clear
appearance of veering) only occurs between eigenmodes of the same family. However, this is not the case at
higher frequencies, as can be clearly seen in Fig. 7, where the eigenfrequencies of the underformed (Fig. 7(a))
and the deformed (Fig. 7(b)) are plotted as a function of the rotational velocity in the frequency range
20–300Hz up to a rotational velocity of 100 rad=s. The net effect of veering at higher frequencies (160–300Hz)
is that the eigenfrequency lines are curved instead of straight and the slope of these lines increases as the
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Fig. 6. Eigenfrequencies (Hz) versus rotational velocity (rad/s) of a rotating deformed tyre. F ¼ 2750N, 400 modes and no damping.
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rotational velocity increases. An additional consequence of rotation is an increase of modal density. It can be
seen in Fig. 7 that, as the rotational velocity increases, the number of modes below 300Hz increases for both
the unloaded and the loaded tyre.

Besides the effect of veering on the eigenfrequencies, the eigenmodes corresponding to two veering
eigenfrequency lines interact also in the so-called transition zones and will finally interchange. More precisely,
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Table 2

Lowest 14 eigenfrequencies and corresponding eigenmodes.

Eigenmode Eigenfrequency (Hz)

(0,1) 46.9

torsion 49.3

(1,1)‘extr.’ 54.6

(1,1)‘0’ 55.8

(1,0)‘0’ 80.5

(1,0)‘extr.’ 84.4

(2,1)‘0’ 87.2

(2,1)‘extr.’ 90.3

(2,0)‘0’ 104.5

(2,0)‘extr.’ 110.6

(3,0)‘0’ 123.7

(3,0)‘extr.’ 131.5

(3,1)‘0’ 132.2

(3,1)‘extr.’ 139.2

Load 2750N.
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the involved modeshapes become coupled in the veering region and when the modes are spatially global,
localisation occurs in this region and vice versa [16], a process often referred to as modal hybridisation in the
literature. Generally, one might argue that modal hybridisation only affects the dynamic response if veering
takes place over a broad velocity range [17]. However, Fig. 7 shows that for high velocities many eigenmodes
are permanently interacting with one or more other eigenmodes. In other words, the high modal density of a
tyre structure leads to persistent mutual interaction between eigenmodes if the velocity is increased. This
interaction occurs between all modes, therefore also between symmetric and anti-symmetric modes, which
means that they cannot be studied separately.

5. Frequency loci veering in rotating deformed tyres

5.1. Influence of the amount of loading

It has been shown in the literature, e.g. [14], that veering occurs in discrete as well as in continuous systems.
The discretisation of a structure can even be the cause of the occurrence of veering, as is demonstrated in
Ref. [18] for a square plate with identical boundary conditions all around. However, it is also shown that
veering can be an inherent behaviour of asymmetric, a-periodic or disordered vibrating structures [18,14]. The
occurrence of veering in rotating deformed tyres is not attributed to the discretisation of the tyre, but it is
attributed to the deformation of the tyre, causing a small a-periodicity in a system with multiple eigenvalues
which gives rise to frequency loci veering. The loading of the tyre causes the eigenfrequencies of the tyre to
become simple (algebraic multiplicity ¼ 1) and sufficiently close for frequency loci veering to occur. In Fig. 8
a schematic view of the deformed tyre geometry for the unloaded and loaded situation for three different loads
is given. The plot corresponds to the circumference that passes through the middle of the tyre cross-section,
which is symmetric in this case.

It can be seen that for a load of 1000N the periodic symmetry of the tyre is only slightly distorted whereas
for the nominal load of 2750N and the higher load of 4500N a clear flattening of the tyre can be seen. In
Fig. 9 the eigenfrequencies of the deformed tyre as a function of rotational velocity are shown for the
frequency range 20–160Hz. Three different load values and no damping have been used.

At a first glance the three figures seem very similar but a closer look reveals that veering becomes more
apparent as the load increases. This can be seen by, for example, looking at the lines in the velocity interval
55–65 rad/s and frequency range 100–110Hz. In this region modes (2,1)‘extr.’ and (3,1)‘0’ interact and the
interaction becomes stronger as tyre loading is increased; the distance between the frequency lines becomes
larger and veering occurs over a broader velocity interval. At rotational velocities above the veering region the
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eigenmodes are interchanged, i.e. the upper branch corresponds to mode (2,1)‘extr.’ and the lower branch to
mode (3,1)‘0’. In the veering region or transition zone the eigenmodes are a combination of these two and can
no longer be classified as a 2- and 3-nodal diameter mode. As mentioned earlier this effect is known as mode
localisation or modal hybridisation. A similar behaviour can be observed at rotational velocities and
frequencies of 50 rad/s and 50Hz and 30 rad/s and 150Hz.

In Fig. 10 the effect of tyre loading at higher frequencies can be seen, where the eigenfrequencies as a
function of rotational velocity are shown for three different load values in the frequency range 160–300Hz. In
this frequency range clear differences can be seen, especially between Fig. 10(a) and (b) (load of 1000 and
2750N, respectively). For the lowest load case no significant effect of veering can be seen at the higher
frequencies (above 200Hz) up to rotational velocities of 70 rad/s nor at higher rotational velocities for the
frequency lines corresponding to higher order modes with m ¼ 0; 1. However, despite the apparent absence of
veering it should be noted that, in the absence of damping, none of the lines shown in Fig. 10(a) cross, but veer
away. For the higher tyre loading values it is clear that strong interaction occurs between all eigenmodes,
which implies that symmetric (m ¼ 0) and anti-symmetric (m ¼ 1) modes cannot be considered separately,
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since they interact with each other. Finally, the dense frequency lines at the upper-right corner of the figures
correspond to eigenmodes of higher order families (2 or more nodal point in the cross-section), where the
effect of veering is apparent for all three load values.

5.2. Influence of damping

In all results shown in this section, in order to keep the same axis scaling and facilitate the comparison of the
plots for different damping values, the eigenvalues are normalised as follows:
�
 Normalised real part: ReðliÞ=2pxi. ffiffiffiffiffiffiffiffiffiffiffiffiffiq

�
 Normalised imaginary part: ImðliÞ=2p 1� x2i .
Here the fact that, for proportional damping, the eigenvalues can be written as li ¼ xioi � joi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2i

q
has

been used, where oi is the undamped eigenfrequency. Therefore at zero rotational velocity both the
normalised real and the imaginary parts are equal (in absolute value) to the undamped eigenfrequencies oi of
the non-rotating tyre independently of the value of xi considered. It should be noted for non-zero values of the
rotational velocities the normalised imaginary part can no longer be interpreted as the undamped frequency,
since, due to rotation, the amount of damping changes and moreover the system is no longer proportionally
damped.

It is suggested in Ref. [19] that strong mode localisation and veering of the eigenvalue loci are the two
manifestations of the same phenomenon. Moreover, it is demonstrated in Ref. [19] that the eigenmodes
corresponding to two veering eigenfrequency lines are interchanged after the so-called transition zones.
Examining the behaviour of the real parts of the eigenvalues in a veering region can reveal this interchange of
eigenmodes. It has been shown in Ref. [20] that the real parts of the involved eigenmodes cross in a veering
region, which can be explained as an exchange of the damping of the involved modeshapes.

To illustrate the behaviour of the real part of the eigenvalues in a situation where no veering occurs the
eigenfrequencies and corresponding normalised real parts for the underformed tyre are plotted in Fig. 11 as a
function of rotational velocity for the nominal damping ratio xi ¼ 0:04. The real parts are negative which
indicates that the tyre response is stable in this rotational velocity range. It is clear that for the undeformed
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Fig. 9. Eigenfrequencies (Hz) versus rotational velocity (rad/s) in the frequency range 20–160Hz; 400 modes and no damping. (a) 1000N,

(b) 2750N, and (c) 4500N.
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Fig. 10. Eigenfrequencies (Hz) versus rotational velocity (rad/s) in the frequency range 160–300Hz; 400 modes and no damping.

(a) 1000N, (b) 2750N, and (c) 4500N.
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Fig. 11. Eigenfrequencies (Hz) (a) and normalised real part (Hz) (b) versus rotational velocity (rad/s). Undeformed tyre, 400 modes and

x ¼ 0:4.
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tyre the real part of the eigenvalues remains constant as the rotational velocity increases and that the lines do
not cross. This leads to the conclusion that the line crossings in the eigenfrequency plots are real crossings and
no veering occurs.

In Figs. 12 and 13 the normalised imaginary and real part of the eigenvalues is shown as a function of
rotational velocity for the deformed tyre for the nominal load of 2750N and three different values of the
damping ratio xi ¼ 0:004, 0.04, 0.4. In order to help the reader interpret the results, 12 regions where veering
occurs for the undamped deformed tyre have been marked with rectangles and numbered as shown in
Figs. 12(a) and 13(a). For example, rectangle 1 in Fig. 12(a) corresponds to rectangle 1 in Fig. 13(a). But in
Figs. 12(b) and (c), and 13(b) and (c) only the regions where veering actually occurs have been marked. By
looking at the evolution of the real parts as a function of the rotational velocity the occurrence of veering and
modal interaction can be established. If the real parts of two eigenvalues cross, as is the case for rectangle 1
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Fig. 12. Normalised imaginary part of the eigenvalues (Hz) as a function of rotational velocity (rad/s), load 2750N and 400 modes.

(a) x ¼ 0:004, (b) x ¼ 0:04, and (c) x ¼ 0:4.
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Fig. 13. Normalised real part of the eigenvalues (Hz) as a function of rotational velocity (rad/s), load 2750N and 400 modes.

(a) x ¼ 0:004, (b) x ¼ 0:04, and (c) x ¼ 0:4.
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Table 3

Influence of damping on the occurrence of veering.

Box Lower mode Higher mode x ¼ 0 x ¼ 0:004 x ¼ 0:04 x ¼ 0:4

1 (0,1) (1,1)‘extr.’ Strong Strong Strong None

2 (1,1)‘0’ (2,1)‘0’ Weak Weak None None

3 (1,1)‘0’ (1,0)‘0’ Weak None None None

4 (1,0)‘0’ (2,1)‘0’ Weak None None None

5 (1,0)‘extr.’ (2,1)‘0’ Weak Weak None None

6 (1,0)‘extr.’ (2,0)‘0’ Strong Strong Strong None

7 (1,0)‘extr.’ (3,0)‘0’ Strong Strong Strong None

8 (2,1)‘extr.’ (2,0)‘0’ Weak None None None

9 (2,1)‘extr.’ (3,0)‘0’ Weak Weak None None

10 (2,1)‘extr.’ (3,1)‘0’ Strong Strong Strong None

11 (2,0)‘extr.’ (3,0)‘0’ Strong Strong Strong None

12 (2,0)‘extr.’ (3,1)‘0’ Strong Strong Strong None

Load 2750N.

I. Lopez et al. / Journal of Sound and Vibration 324 (2009) 622–639638
shown in Fig. 13(a), then it can be concluded that veering occurs and that the eigenmodes are interchanged
in the transition region. This is in agreement with the behaviour of the real parts of the involved eigenvalues in
a veering region shown in Ref. [20].

The plots shown in Figs. 12 and 13 have been carefully studied to determine whether veering occurs or
not and the results are summarised in Table 3. The interaction is termed ‘weak’ if the crossing of the real
parts occurs in a narrow rotational velocity interval and ‘strong’ if the real parts cross in a broader
rotational velocity interval. The term ‘none’ means that the real parts do not cross and, therefore, no
veering occurs.

It can be concluded from the results in Figs. 12 and 13 and Table 3 that damping has a significant influence
on the occurrence of veering. Already very low values of the damping ratio cause some of the veering regions
to disappear and if the damping increases to the experimentally determined nominal value (xi ¼ 0:04), only the
veering regions where strong interaction occurs remain. If damping is further increased to unrealistically high
values veering completely disappears and the eigenfrequencies tend to vary linearly with the rotational velocity
as in the undeformed case. Although not plotted, the trend shown in Figs. 12 and 13 for the lower frequency
range has also been found at higher frequencies.
6. Conclusions

In the present paper the effect of rotation velocity on the eigenvalues of a rotating deformed tyre has been
studied. The presence of a phenomenon known as frequency loci veering has been revealed which is induced by
the a-periodicity resulting from tyre loading. This a-periodicity leads to close eigenvalues with algebraic
multiplicity 1. The effect of veering increases with both rotational velocity and frequency. Since a tyre is a
modally rich structure for frequencies above 100Hz, there is no space for eigenfrequencies to follow the path
described by the Doppler shift. The ‘neat’ eigenvalue distribution for an undeformed rotating tyre predicted by
the Doppler shift is not directly applicable to a deformed rotating tyre, since the evolution of the eigenvalues
of a deformed tyre as a function of rotational velocity cannot be described by a linear relationship.
Furthermore, veering is stronger as tyre load increases. Material damping has a significant influence on
veering. When damping is included the number of eigenmodes that interact with each other decreases
drastically (even for a small amount of damping) and the interaction becomes weaker. When damping is
increased to unrealistically high values the eigenfrequencies tend to increase/decrease linearly with the
rotational velocity. The implications of frequency loci veering for tyre/road noise predictions should be further
investigated, but it is expected that veering will significantly affect the predicted dynamic response of the
rotating tyre.
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